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Abstract—At present, wireless home routers are becoming increasingly smart. While these smart routers provide rich functionalities to

users, they also raise security concerns. Although the existing end-to-end encryption techniques can be applied to protect personal

data, such rich functionalities become unavailable due to the encrypted payloads. On the other hand, if the smart home routers are

allowed to process and store the personal data of users, once compromised, the users’ sensitive data will be exposed. As a

consequence, users face a difficult trade-off between the benefits of the rich functionalities and potential privacy risks. To deal with this

dilemma, we propose a novel system named Secure and Smart Network (S2Net) for home routers. For S2Net, we propose a secure

OS that can distinguish and manage multiple sessions belonging to different users. The secure OS and all the router applications are

placed in the secure world using the ARM TrustZone technology. In S2Net, we also confine the router applications in sandboxes

provided by the proposed secure OS to prevent data leakage. As a result, S2Net can provide rich functionalities for users while

preserving strong privacy for home routers. In addition, we develop a crypto-worker model that provides an abstraction layer of

cryptographic tasks performed by a heterogeneous multi-core system. The other important role of crypto-worker is to parallelize the

computations in order to resolve the high computation cost of cryptographic functions. We report the system design of S2Net and the

details of our implementation. Experimental results with benchmarks and real applications demonstrate that our implementation is

capable of achieving high performance in terms of throughput while mitigating the overhead of S2Net design.

Index Terms—Smart home router, ARM TrustZone, private data protection, transport layer security, heterogeneous multi-core architecture,

secure operating system
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1 INTRODUCTION

O WING to the proliferation of smart devices, such as
smartphones, tablets, and other Internet-of-Things

(IoT) devices, wireless home routers have become the center
of our homes. In addition to basic network connectivity,
home routers are now providing a wider range of function-
alities for a connected smart home, including network accel-
eration, parental control, multimedia streaming, personal
cloud storage, and a central hub for IoT devices. These net-
work functionalities have been traditionally provided by
internet service providers (ISPs). However, in conjunction
with the rising concerns about privacy and autonomy, more
users are focusing on taking control of how personal data is
processed away from remote entities, such as cloud servers
or middleboxes, through their own home routers [1], [2],
[3]. A number of companies have already released several

router products for smart homes, for example, OnHub from
Google [4].

While smart routers provide more functionalities to users,
they also raise security concerns. Since smart routers process
and store personal data of users, which include photos taken
by family members, personal documents, or evenweb brows-
ing history, once compromised, these sensitive data will be
exposed. Unfortunately, the existing operating systems (OS)
for wireless home routers, which are mostly derived from
embedded Linux, are far from secure [5]. Several attacks that
specially target home routers have already been reported [6].
Adding more smart functions may evenworsen this situation,
as these new applications (apps)may have vulnerabilities and
can be compromised as well. For example, a personal photo
manager can expose user’s private photos, if it becomes com-
promised. Unfortunately, this situation cannot be easily miti-
gated using conventional methods like OS patching, because
OS updates cannot eliminate all the (potential) vulnerabilities.

Indeed, market research has shown that more than
63 percent of users are concerned about the security of their
home networks, and a home router is one of the weakest
links [7]. Coincidently, end-to-end encryption (i.e., HTTPS)
is widely used for Internet traffic, in response to the rising
concerns over the privacy of users. Since all the payloads
sent over HTTPS are encrypted, end-to-end encryption dis-
courages even the traditional network functions (like web-
proxy and parental control) on the intermediate nodes such
as middleboxes installed by ISPs – not to mention self-
deployed, less managed home routers. For example, deep
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packet inspection (DPI)-based filtering, which is used to pre-
vent access to illegal/harmful contents, cannot work with
HTTPS connections [8]. Therefore, customers are facing a dif-
ficult dilemma: Should we embrace the new features of smart
routers while putting our privacy at risk? Or, should we conserva-
tively preserve our privacy while sacrificing functionality?

Resolving this dilemma, however, is challenging. One
particular difficulty lies in that both router apps and the
underlying OS are untrusted. Private data can be leaked by
the compromised OS (e.g., network stack) even when none
of the apps are malicious, and vice versa. Consequently, the
previous approaches in trustworthy computing, which
assume that either the OS or the apps are trusted, cannot be
applied directly, even though some of them rely on modern
hardware security technologies such as Intel SGX and ARM
TrustZone [9], [10], [11], [12].

This paper resolves the above dilemma by using a novel
system named Secure and Smart Network (S2Net), which is
designed for ARM-based smart home routers. The objective
of S2Net is allowing the router apps to process personal
data while ensuring that any personal data are not leaked
by either the router OS or the apps. To achieve this goal,
S2Net has the following three key features:

� We propose a secure OS in S2Net, and place the pro-
posed secure OS and untrusted router apps in the
secure world by leveraging ARM TrustZone technol-
ogy [13]. S2Net confines the vulnerable router apps

(called applets) in sandboxes to prevent malicious
behaviors. In S2Net, we also design secure interfaces
through with the router apps can interact with the
secure OS.

� The secure OS is designed to include a session man-
ager to empower the home router to distinguish and
manage multiple sessions that belong to different
users and share the same domain. We also propose a
novel Same-Origin-plus-User Policy (SOUP) so that
the session manager can protect the personal data of
an individual, which is not possible when using
Same-Origin Policy (SOP).

� We develop a crypto-worker model that provides an
abstraction layer of cryptographic tasks performed
by a heterogeneous multi-core system. Accordingly,
the implementation details related to the heteroge-
neous processors are isolated from the session man-
ager. Note that S2Net can create a bottleneck at the
home router because every data packet is required to
be decrypted before being processed and needs to
be re-encrypted afterward. Based on this notion, the
crypto-worker also distributes cryptographic tasks
to multiple computation modules considering
their loads.

By using the aforementioned features, S2Net can pre-
serve the privacy of user data in home routers, as shown
Fig. 1. All private data is supposed to be encrypted when
exchanged between end nodes (i.e., users and remote serv-
ers) as shown in Fig. 1a. If the private data is decrypted in
smart router OS, the data can be leaked easily (Fig. 1b).
However, the private data in S2Net can only be decrypted
inside a secure OS and then passed on to router apps
through secure interfaces (Fig. 1c).

To the best of our knowledge, S2Net is the first of its kind
system that enables both strong privacy and rich functional-
ities in home routers. Our contributions in this paper are
summarized as follows:

� We characterize the dilemma in choosing between
functionality and privacy of smart home routers,
and then show that the current mechanisms fall
short in resolving it. (Section 2).

� We present the design of S2Net, a novel system for
home routers, and its key components. (Section 4).

� We describe our implementation of S2Net on ARM
and the techniques developed to optimize the system
performance. (Section 5).

� We report the evaluation results of various bench-
marks and real apps, to show that our implementa-
tion is able to mitigate the overhead of S2Net and
meet the requirements of various router apps.
(Section 6).

2 MOTIVATION AND BACKGROUND

In this section, we introduce the smart home router and ARM
TrustZone as the background andmotivation for ourwork.

2.1 Smart Home Router

In recent years, the home-router industry has reinvented
home routers to be smart. Compared to traditional routers,

Fig. 1. Data flow of user data in a) traditional router, b) smart router, and
c) S2Net.
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these new smart home routers have more powerful hard-
ware, much richer functionalities, and are programmable –
allowing the addition of new applications [4], [14], [15].
These applications can be either network middle-box services
or local services, such as:

� Network and service acceleration This type of service
includes technologies such as Web caching, pre-
fetching, or application-specific proxies. For exam-
ple, a router may download a movie on behalf of
a user, and the user can immediately watch the
movie when back home. This is called offline
downloading [16].

� Unified security for home Smart home routers may
inspect the network traffic to detect phishing, virus,
and malware for all home devices (e.g., DPI-based
filtering). This is particularly useful for small-factor
devices such as low-end phones and home IoT devi-
ces that often do not have or cannot run sophisti-
cated security software [17].

� Home IoT hub With the emergence of various
home IoT devices such as smart light bulbs and
thermostats, there is a need for a local, persistent
hub to control and manage all the home IoT devi-
ces. Many smart home routers are designed as
such a home IoT hub. They also provide remote
access, which enables users to use a smartphone
to check and control their home IoT devices from
outside [14], [15].

� Home entertainment center With internal or external
storage, smart home routers may also be a file server
for family photos, videos, music, and movies, and
can also act as a home entertainment center to stream
various media content to other devices [15].

In order to support such rich and flexible functionalities,
smart home routers run a complex, full-fledged OS (e.g.,
Linux, OpenWrt [18], or Android) and provide rich frame-
works for developing third-party plugins. However, the
openness and flexibility of smart home routers impose big
security problems; these adopted OSes have vulnerabilities
that can be compromised. We have already seen that vul-
nerabilities have been reported frequently in these OSes,
from kernel and sub-systems to other key libraries [5].
Moreover, third-party plugins (router apps) may also con-
tain vulnerabilities and thus may not be fully trusted. In
conclusion, the reality of smart homes is that both the OS
and applications cannot be trusted. Therefore, previous
works on trustworthy computing, which assume that at
least one of them is trusted, cannot be directly applied [9],
[12], [19].

Coincidently, the rise of privacy concerns even calls for
end-to-end encryption for all Internet traffic, which, how-
ever, effectively disables any new functions on packet
processing. mcTLS [10] and BlindBox [11] have been pro-
posed to enable network functionalities even on encrypted
data, assuming that middleboxes are trusted. However,
home routers could be compromised more easily, unlike
professionally administered middleboxes. Consequently,
users face a difficult dilemma between embracing the new
features of smart home routers and putting their privacy
at risk.

2.2 ARM TrustZone

ARM TrustZone is the hardware architecture of ARM for
trusted computing [13]. It is widely available in many ARM
processors including Cortex-A and Cortex-M processors.
The heart of ARM TrustZone is a partitioning of hardware
and software resources into two “worlds” – a Secure world
for the security subsystem and a Normal world for every-
thing else. Each physical processor core provides two vir-
tual cores that respectively run in the two worlds, in a time-
sliced fashion. The two worlds are separated by hardware
access control. Each world is an isolated runtime environ-
ment, and has its own resources including memory, regis-
ters, cache, controllers, and interrupts. As a result, software
programs running in different worlds are strongly isolated.
Depending on the configurations of the system, a resource
can be partitioned between the two worlds (e.g., memory),
shared by them, or assigned to one world only (e.g.,
peripherals).

When an ARM system boots, it always enters the Secure
world first. This design ensures that a secure bootloader can
provision the system resources before any untrusted code
(e.g., an OS for the Normal world) gets a chance to run. For
example, the secure bootloader allocates a range of physical
memory for the Secure world only, programs the interrupts
and DMA controllers, and loads a secure OS. Subsequently,
the secure code yields to the Normal world to run an
untrusted commodity OS.

3 THREAT MODEL AND ASSUMPTIONS

System Architecture. We assume that a smart home router is
ARM-based and supports ARM TrustZone.1 It is assumed
that the ARM system-on-chip (SoC) hardware including
ARM TrustZone is correctly implemented and the booting
process is trusted. Thanks to the hardware-based protection
provided by ARM TrustZone, we trust that the secure OS
running in the Secure world is not compromised. On the
other hand, we do not trust the commodity OS (e.g., Linux,
OpenWrt, or Android) running in the Normal world. We
assume that the applets can be comprised even though they
are not designed to be malicious.

Cryptographic Functionalities.Weassume that the apps in the
clients support cryptographic protocols when they are com-
municating with the router or a remote server. As a default
protocol, the transport layer security (TLS) used by HTTPS
and datagramTLS (DTLS) are considered in this paper.

Range of Protection. We do not prevent Denial-of-Service
(DoS) attacks. A malicious OS in the Normal world may
drop network packets, reset network connections, or
delete stored data. As long as we allow the untrusted OS
in the Normal world to access system resources, these
attacks cannot be prevented. We also assume that attack-
ers do not have physical access to a router, and therefore
our system is vulnerable to certain physical attacks such
as memory attacks.

The attack scenarios considered in this paper are as
follows:

1. ARM TrustZone was first introduced and implemented in
ARM1176JZ(F)-S processor, which was based on ARMv6Z architecture
[20]. Its successor, ARMv7-A architecture, was already the most widely
deployed architecture for mobile devices.
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� Memory disclosure and code injection: A compromised
OS may try to read data from the memory space allo-
cated to an app in an inappropriate way.

� Malicious network stack: Since the private data proc-
essed by apps is passed to a network stack, the data
can be leaked by a malicious network stack.

� Malicious file system: The data written by an app can
be leaked by a compromised file system.

� Leaking data to remote server: A compromised app
may try to send private data to remote servers.

4 S2NET SYSTEM DESIGN

In this section, we present the S2Net system design, includ-
ing its architecture and key components.

4.1 System Architecture

As shown in Fig. 2, S2Net is based on ARM TrustZone,
which partitions software and hardware into Secure and
Normal worlds. The conventional router OS, e.g., Linux or
Android, is placed in the Normal world; hereafter, we refer
to it as the function OS (FOS). FOS retains most of the
responsibilities of a conventional router OS, namely driv-
ing all peripherals (e.g., hard disks, SD cards, and network
interfaces), maintaining Internet connectivity, and perform-
ing packet forwarding. FOS is usually fat and vulnerable
to attacks.

Inside the Secure world, S2Net employs a thin secure OS
(SOS) such as a microkernel,2 which is securely booted into
the Secure world by the processor. The main components of
S2Net deployed in the SOS leverage FOS’s network stack
and file system to communicate with clients/servers and to
manage persistent storage devices, respectively. Although
personal datamay be passed to the FOS or stored in a storage
device managed by FOS, they are always shielded by encryp-
tion. Therefore, all the personal data can be decrypted and
processed inside the SOS. To do so, a client should involve a
secure protocol when accessing a service in an S2Net router,
e.g., TLS/DTLS. Non-TLS/DTLS traffic will not be passed to
the SOS; instead, it will be routed to its original destination
as done by traditional routers.

Next, we elaborate the main components in S2Net,
namely the cryptography manager, narrow secure interface,
session management, secure storage, and attestation.

4.2 Cryptography Manager

The cryptography manager internally maintains multiple
crypto-workers, which provides an abstraction layer of cryp-
tographic tasks performed by a heterogeneous multi-core
system, with the aim of hiding the implementation details
related to the heterogeneous processors from the session
manager and the SFS. The other important role of crypto-
worker is to parallelize the computations in order to reduce
the high computation cost of cryptographic functions. The
cryptography tasks requested by the session manager or the
SFS are distributed to the workers by considering the current
computational load of the workers. The implementation
details of the cryptography manager on a heterogeneous
multi-core system are described in Section 5.2.

As a cryptographic secure protocol, we use TLS/DTLS
protocol because TLS/DTLS is widely used for Internet
services. It comprises a handshake protocol for session estab-
lishment and a record protocol for data exchange. It realizes
the following three security properties: 1) Entity authentica-
tion. During the handshake, the client authenticates the
server by verifying that a valid certificate links the server’s
domain name and the public key. 2) Data secrecy. The TLS/
DTLS end-points negotiate a symmetric session key during
the handshake and use this session key to encrypt/decrypt
records (application data blocks). 3) Data integrity and authen-
tication. The session key is also used to generate a message
authentication code (MAC) for each TLS/DTLS record. The
endpoints can use this MAC to verify the origination of a
record and its integrity.

4.3 Session Manager

The session manager is the core component of S2Net in a
smart home router. In the session manager, we design and
implement the following two important functions: 1) estab-
lish the TLS/DTLS connection to the client/the remote
server; and 2) manage the life cycles and data flows of app-
lets over the TLS/DTLS connections to prevent malicious
behaviors of applets.

4.3.1 Connection Establishment

To separate the en/decryption process of TLS/DTLS from
FOS, a TCP/UDP proxy is installed in the FOS as shown in
Fig. 2. The job of the proxy is simple. It listens to the pre-
configured TCP/UDP ports (e.g., 443 for HTTPS) and
accepts a TCP/UDP connection from a client. Then, it for-
wards all payload data to the session manager in SOS
through a cross-world channel. The entire payload data is
annotated with the TCP/UDP connection metadata, i.e., the
5-tuple of [src-ip, src-port, dst-ip, dst-port, protocol]; thus,
the session manager can have enough information to
demultiplex data for different TCP/UDP connections.

If the router participates in a TLS (or DTLS) session as a
middlebox (e.g., a Web caching proxy), the session manager
creates a TLS session to the genuine remote site on behalf of
the client. If the session between the remote site and the
router is established successfully, the session manager may

Fig. 2. System architecture of S2Net.

2. A microkernel has a small Trusted Computing Base (TCB) and
thus can be secured through formal proof [21].
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dynamically sign a certificate for the remote server domain
(i.e., Server Name Indication [22]) using a router-specific
certificate and return the signed certificate to the client. In
this way, the S2Net router becomes “man-in-the-middle” of
a TLS session between the client and the server.

The router-specific certificate is a unique certificate on each
S2Net router, which is pre-installed in the SOS. We require
the client to add the router-specific certificate into the trusted
certificate authority (CA) list to accept the certificate signed
by the router. Compared to the previousworks (e.g., BlindBox
[11]), by using the router-specific certificate, the computa-
tional overhead can be decreased significantly (see Section 6
for details). Moreover, no modification on the protocol stack
is required. However, there are the essential prerequisites: the
private key of the router-specific certificate must be secured,
and the key should be managed by a trustworthy entity. In an
S2Net router, the router-specific key is encrypted/stored
inside the secure file storage (Section 4.5), and the SOS is veri-
fied/protected by ARM TrustZone (Sections 4.1 and 5.1).
Thus, a user can start a secure communication by trusting the
router-specific certificate.

4.3.2 Applets and Data Flow Management

Based on the domain name and the port number, the session
manager looks up the corresponding configuration to load
one or more applets and runs them in dedicated sandboxes
(Section 4.4). The session manager also controls the data
flow of applets by mapping their upstream/downstream
channels to various entities. Fig. 3 illustrates a few typical
examples. For a local service that is handled by a single
applet, the session manager maps the downstream channel
to the client TLS connection, while connecting the upstream
channel to null (Fig. 3b). For a middlebox service, the proc-
essed user request may need to be forwarded to the genuine
remote site. Hence, the upstream channel is mapped to the
remote TLS connection (Fig. 3c). Finally, in a more complex
case where the a middlebox service may contain a chain of
several applets as shown in Fig. 3d, the session manager
will connect the upstream channel of an applet to the down-
stream channel of an uplink applet. The downstream chan-
nel of the first applet is mapped to the TLS connection to the
client, while the last applet may connect its upstream chan-
nel to the remote TLS connection.

Clearly, the S2Net session manager ensures that the per-
sonal data, after being processed by any applet, can only
either be return to the client or be forwarded to the intended
remote site as indicated in the original TLS/DTLS

handshake. In other words, S2Net prevents an applet from
establishing a connection to any other (potentially mali-
cious) servers. Moreover, the personal data cannot be leaked
as plain text. Fig. 4 shows three en/decryption layers that
any data should pass through. Even if an applet might be
compromised, all the data are encrypted in the SOS kernel
layer by the session manager. Hence, the personal data
passed to the untrustworthy I/O interface layer will be
always encrypted, and the attacker cannot read any data.
Consequently, an applet cannot cause sensitive information
leakage even if it may be malicious.

By default, an applet instance is created when a TLS ses-
sion is established and destroyed when the TLS session is
torn down. However, a user may change this behavior by
making an applet instance as background. A background
applet is useful if a user wants to delegate some tasks to the
router. For example, a user may want to download a large
file and may delegate this job to the home router, so that the
downloading will continue even if the user has discon-
nected and powered off the phone. One challenge for back-
ground applets is that later on when the user connects back,
the same applet instance should be attached to the newly
established TLS session. In this paper, we adopt a Same-Ori-
gin-plus-User policy (SOUP) to uniquely map later TLS ses-
sions to the background applet of a user. We discuss SOUP
in the next subsection.

4.4 Secure Interfaces

To isolate applets that process decrypted personal data,
S2Net provides very simple and narrow secure interfaces
with a sandboxing mechanism. As shown in Fig. 5, only
two necessary interfaces are opened to an applet: one for
communication and the other for file storage. Hence, the
data processing pattern of an applet is extremely simple.
Each applet has only two communication channels: a down-
stream channel to the client and an upstream channel to the
remote server (see Fig. 3a). The file storage interface is for
applets to access files on the local storage with strict access
permissions (Section 4.5). Moreover, all the parameters
are strongly typed and validated by SOS to eliminate
any potential buffer overflow vulnerabilities. Since the inter-
face channels can be assigned only by the session manager
(Section 4.3), applets can read/write data only from/into
the given channels. As a result, applets are strictly restri-
cted, and can do just their data-processing work but no
other unwanted things (e.g., making a new connection with
a remote server).

Fig. 3. Data flow of applets. (a) Basic communication model. (b) Single
applet for a local service. (c) Single applet for a middlebox service. (d) A
chain of applets for a middlebox service. Fig. 4. En/decryption data flow in S2Net.
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4.5 Secure File Storage and SOUP

S2Net provides a secure file storage (SFS) and allows an
applet to store persistent data securely. The design of such a
secure file storage needs to address the following two chal-
lenges: First, since SOS shares the same storage devices
with the untrusted FOS, the stored personal data should not
be able to be interpreted or modified by the FOS. Second,
SFS should be able to manage the access rights, so that an
unauthorized applet cannot the read personal data stored
by another applet.

Sealed Storage.To prevent the FOS from accessing personal
user data, we use cryptography and authentication to seal the
data in storage. SFS is based on a simple sealed storage [23],
which maps a file/folder in the SFS to a file/folder in the
FOS file system. Every file transferred to the FOS’s file sys-
tem is first encrypted using a private storage key (derived
from a root key stored in a hardware module, Section 5.1).
Moreover, the SFSmaintainsmetadata containing the hierar-
chical hash tree of the files to protect against unauthorized
modification and replay attacks. Since the metadata file itself
is also encrypted and signed by the SOS, FOS can neither
read nor edit the personal data.

Same-Origin-Plus-User Policy (SOUP). To prevent unau-
thorized applets in the SOS from accessing the personal
data, SFS needs to put all the files generated by one applet
into a compartment and attach each compartment to a sepa-
rate security label corresponding to the applet. One simple
labeling method is using the domain name. This approach
is similar to the Same-Origin Policy (SOP), which widely
used in the existing Web browsers. However, SOP is not
suitable for home routers, which are supposed to serve mul-
tiple users; even when two users access the same domain
name, their personal data should not be mixed up. In
S2Net, we address this issue by applying a new security
policy called Same-Origin-plus-User Policy (SOUP). To label
a compartment in SFS, SOUP uses the username or identi-
fier and the domain name, together.

One way to obtain the authenticated username is to
request a client certificate during the handshake phase.
Although both TLS and DTLS are standardized as the
channel security for computers, smart devices, and IoT
devices [24], TLS/DTLS client certificates are not widely
used in practical life. Therefore, in this paper, we lever-
age a local TLS/DTLS service (i.e., the User auth module
in Fig. 2) to authenticate a user. Once the user is authen-
ticated, a user label is generated for tagging all the data
of the user (Section 5.1).

4.6 Attestation

We propose to use attestation [25] to detect whether an
applet is compromised or not. For the attestation, the SOS
calculates the hash of the memory block (e.g. SHA256 hash)
and compares the hash to a pre-stored and certified record
to decide whether the applet is compromised or not. An
existing work [26] has shown that ARM TrustZone can be
used for TPM functions, and therefore it can provide roots
of trust required by the attestation.

5 IMPLEMENTATION AND OPTIMIZATIONS

We implemented an S2Net prototype on the NXP SABRE
Lite i.MX 6Quad development board, which has a 1 GHz
ARM Cortex-A9 quad-core CPU and 1 GB RAM. The CPU
supports ARM TrustZone and a set of other advanced
security features including high assurance boot, crypto-
graphic cipher engines, random number generator, secure
RTC, and tamper detection [27]. We use Genode3 release
15.02 as the SOS and Linux version 3.10.17 as the FOS,
respectively. Table 1 shows the LoC of the key components
and the sample applets.

5.1 S2Net System

TLS/DTLS Splitting and HTTP/2. To split a TLS/DTLS ses-
sion between the Secure world and the Normal world, we
port OpenSSL version 1.0.1i [28] onto Genode and run a
TLS/DTLS proxy in the Secure world. We leverage the net-
work stack of Linux in the Normal world to handle all
TCP/UDP-layer activities. Before a client sends an HTTPS
request to a Web server, it first tries to make a TCP connec-
tion with the Web server. The TCP/UDP proxy shown in
Fig. 2 handles TCP handshakes and accepts the TCP connec-
tion on behalf of the Web server. When the first data packet
(i.e., the TLS client Hello message) arrives, the TCP/UDP
proxy forwards it to the TLS/DTLS proxy in the Secure
world. The TLS/DTLS proxy handles all the TLS hand-
shakes with the client. The TCP/UDP proxy in the Normal
world also makes a new TCP connection to the Web server
and forwards all the data packets to the TLS/DTLS proxy,
which also does TLS handshakes with the Web server. After
that, the client can send HTTPS requests to and receive
HTTPS responses from the Web server. All the HTTPS data
packets are decrypted and then re-encrypted by the TLS/
DTLS proxy (i.e., by the secure protocol module) in the
Secure world.

Fig. 5. Interfaces of S2Net sandbox.

TABLE 1
Lines of Code (LoC) of our Implementation

Component or applet LoC

Crypto-workers (incl. CAAM driver) 9,375
Session manager (incl. proxy server/client) 31,033
Secure storage (incl. FS proxy and SFS library) 8,875
Web caching applet 334
Content filtering applet 750
Home file server applet 240

Total 50,607

3. Even though Genode microkernel [21] has been used in this
study, any other microkernel may also be compatible with S2Net.
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Cross-World Communication. We use shared memory for
the two worlds to communicate with each other. During ini-
tialization, the FOS allocates the memory block used for
cross-world communication and tells the base address of
the memory block by writing the base address into a register
and calling the SMC instruction. Then, the SOS reads the
base address from the register. The shared memory is orga-
nized as ring buffers with necessary metadata to describe
the content in each data slot.

Secure File System. We build our secure file system using
the Secure Block Device (SBD) library [29], an open-source
library that applies cryptographic confidentiality and integ-
rity protection to block devices. The library also includes a
block cache to improve the performance. We ported and
modified its code so that it can run in the SOS to provide file
I/O interfaces to the session manager and work with our FS
proxy in the Normal world over the cross-world communi-
cation channel. The FS proxy leverages the existing file sys-
tem (ext4/fat32) of Linux to store the encrypted data into
files. Among the authenticated encryptions supported by
SDB, we choose to use Offset Codebook Mode (OCB) in our
implementation due to its good performance [29].

Secure Booting and Key Management. Thanks to the High
Availability Boot (HAB) library on i.MX family chipsets, the
development board can authenticate a program image using
a digital signature (first boot stage) [30]. Therefore, only an
image with a certificate signed by the private key can be
booted on the board while the public key is permanently
burnt inside the board. In our prototype, U-Boot is used as a
bootloader (second boot stage). U-Boot can be configured to
authenticate the given kernel image before it boots on it
(third boot stage). Hence, only the authenticated kernel
image can pass the checks and boot up.

The i.MX6 processor has a permanent key named One
Time Programmable Master Key (OTPMK), which is burnt
by NXP before shipping their processors. The OTPMK is
protected by, and is only accessible by, a hardware module
named Cryptographic Acceleration and Assurance Module
(CAAM). Based on the OTPMK, CAAM provides a protocol
to protect personal user data. The data is encrypted using a
randomly generated encryption key; the encryption key is
also encrypted by a key derived from OTPMK. This
encrypted data-key pair can be stored together inside the
non-volatile storage. Since the encrypted data and key can
be decrypted only by CAAM, we can securely store our root
keys (such as encryption key for metadata of secure storage)
and the router-specific certificate.

User Authentication. Since we do not trust the FOS, we
cannot simply use the IP or MAC address of a client to
authenticate the users, because it can be easily falsified by
the FOS. Instead, we choose to use a method based on
HTTP cookie to perform user authentication. The first time
when a client sends an HTTP request through the S2Net
system, a user login/register page is popped out. After the
user logs in, a token is generated for the user and inserted
into the cookie stored under the router’s domain. After that,
when the user sends an HTTP request, the S2Net system
redirects the user to the router’s domain. Then, the user
authentication module retrieves the token from the cookie
to identify the user. Only for the authenticated users, the
S2Net system will generate a one-time authentication code

(OTAC) and redirect the user to the remote server with the
code (since the content is encrypted by HTTPS, OTAC can-
not be read by the FOS or other intermediate nodes). Only
when the S2Net system recognizes the valid OTAC, the
HTTP request will be forwarded to the remote server. Since
now the router would insert the token into the cookie stored
under the domain of the remote server, further redirections
will not be needed on the same domain. This cookie-based
approach works well, as all browsers support cookies.

For any other devices/applications that are not compati-
ble with the HTTP cookie-based authentication including
IoT devices, a client certificate is requested to authenticate a
user. IoT devices supporting DTLS (or TLS) are supposed to
have their own client certificate and present the certificate
when they do the DTLS handshake [24]. Therefore, the
S2Net system can obtain the client certificate and authenti-
cate the user during the handshake phase.

5.2 Performance Optimizations

S2Net introduces two major overheads: 1) world-switching
between the Normal and Secure worlds caused by frequent
cross-world communications, and 2) various computation-
intensive cryptography operations, especially the decryp-
tion/encryption required by TLS/DTLS splitting. Thus, it is
critical to optimize the system performance, particularly
when running on ARM platform with a weak CPU. Our
implementation can fully utilize the hardware capability of
the i.MX 6Quad board to mitigate the overheads introduced
by S2Net. To do so, we develop techniques to 1) minimize
the number of world-switching, and 2) parallelize all the
cryptography tasks.

Minimizing World-Switching. Switching from the Normal
world to the Secure world or vice versa is not free. Each
world-switching takes about 29 microseconds to save and
restore the full switching context. In the S2Net system, the
Secure world needs to receive every network packet from
the Normal world and also needs to send them back to the
Normal world. Therefore, if those cross-world communica-
tions are not properly handled, they may cause a large num-
ber of world-switching and thus incur a high overhead (e.g.,
meaningless world-switching should be prevented when
there is no packet to send).

We minimize the number of world-switching through
two techniques. First, we assign dedicated CPU cores to the
two worlds to avoid CPU-core sharing among the two
worlds. Since all computation-intensive data decryption
and encryption happen in the Secure world, we assign more
cores to the Secure world compared to the Normal world.
Without loss of generality, in the prototype of S2Net, three
and one cores are assigned to the Secure and Normal
worlds, respectively.4 Without sharing any CPU core, the
FOS and the SOS can do their jobs simultaneously, and thus
we are able to avoid unnecessary world switching caused
by CPU-core sharing.

Second, we employ a polling mechanism in cross-world
communications to further reduce the number of world-

4. The assignment of CPU cores can vary according to the number of
total CPU cores, the number of applets the user wants to use and their
computational load. A minimum requirement would be at least one
CPU core per each world.
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switching. Instead of letting one world write data into the
shared memory and then notify the other world to fetch the
data, we use a dedicated thread in both worlds to monitor
the changes of the shared memory. Such a thread keeps
polling a flag of the shared memory. When the Secure or
Normal world wants to send a data packet to the other
world, it first writes the data packet into an empty data slot
in the shared memory. Then, it changes the corresponding
flag of the shared memory. As a result of the continuous
polling in the other world, the other world can immediately
detect the data-transmission intention and fetch the data
packet from the shared memory for processing, without any
world-switching.

Crypto-Worker. To optimize and speed up cryptographic
operations in the S2Net system, we developed a crypto-
worker model in the cryptography manager. The developed
crypto-worker model provides an abstraction layer of cryp-
tographic tasks performed by a heterogeneous multi-core
system. Thus, the implementation details related to the het-
erogeneous processors are isolated from the session man-
ager and the SFS, as shown in Fig. 2.

As we assign three cores to the Secure world, we create
three homogeneous crypto workers (CW1) to serve all the
cryptographic tasks, each running on one of the three cores.
Examples of cryptographic tasks include encrypting or
decrypting a data packet or a data chunk of a file. We also
leverage the cryptographic hardware of the board, i.e.,
CAAM, to further boost the system performance. To enable
cryptographic functions provided by CAAM, we port the
CAAM driver for Linux into Genode. Since the system
architecture of Linux and Genode are totally different,
Linux kernels system calls in the CAAM driver are
remapped to Genodes system function calls. By utilizing the
CAAM driver, we run a different crypto worker (CW2) on
the CAAM. When there is a request for cryptographic task
from the session manager or the SFS, the crypto worker,
CW2, makes a job descriptor including the type of crypto-
graphic algorithm, address/size of the data buffer and key.
Then, the job descriptor is passed to the CAAM. After the
requested cryptographic job has been done by CAAM, the
result is pulled and returned to the cryptography manager.
By identifying the different computational powers of the
heterogeneous crypto-workers, CW1 and CW2, the cryptog-
raphy manager schedules and dispatches the cryptographic
operations to these four crypto-workers (three CW1s and
one CW2 on the three CPUs and CAAM). It keeps monitor-
ing the load of the crypto-workers and dispatches a new
cryptographic task to the crypto-worker that has the lowest
load. With these parallel crypto-workers, we can signifi-
cantly improve the performance of our S2Net system, as we
will show in Section 6. Fig. 6 shows the interfaces used by
the session manager to request the crypto workers to per-
form the cryptographic tasks.

5.3 Sample Applets

To demonstrate how to add new functionalities on our
S2Net system, we build three sample applets: HTTPS Web
cache, content filtering, and a home file server.

HTTPS Web Cache. We develop an HTTPS-Web-cache
applet on S2Net. Under the SOUP policy, a user is
unable to use the cached data already downloaded by
other users. However, the SOUP policy can be useful in
some cases where users do not want to share the cached
data even between family members. For example,
parents may not want to share their data or browsing
history, which can potentially contain age inappropriate
data, with their children.

When a user sends an HTTPS request to a remote server,
the cache applet will intercept the request and check if a
cached version of the requested document is available in
the secure file storage. If yes, the cached version is returned
to the user without going all the way to the remote server.
Otherwise, the web-cache will forward the request to the
remote server and get the response. If the response is cache-
able (specified by the cache control header field), the applet
stores it in the secure storage. According to SOUP, a cached
file should be authenticated based on both the user token
and the certified domain name of the remote server. There-
fore, any personalized data such as web browsing history
will not be leaked.

Content Filtering. Content filtering or parental control is
widely used to protect people from visiting harmful/illegal
websites. Unfortunately, content filtering services cannot
work on HTTPS sessions, because the encrypted URLs and
contents cannot be read (although the domain is plaintext).
In the S2Net system, however, a content filtering applet can
work with decrypted URLs and contents.

When a request arrives, the content filtering applet
checks whether the URL of the request can be found in a
local URL-blacklist consisting of all the websites that are not
allowed to be accessed. If the URL is in the blacklist, the
applet will block the request. We use a Bloom filter [32]
based approach to speed up the URL matching over the
blacklist. In addition, we also implement DPI filtering based
on regular expression to recognize (potentially) harmful
words and patterns.

Home File Server. The home-file-server applet acts as a
local service without connecting to a remote server. It lever-
ages the local secure storage of the router for family mem-
bers to store and share various files from different devices.
It provides a simple Web interface for uploading and down-
loading files.

6 EVALUATION

In this section, we evaluate the security and performance of
S2Net.

Fig. 6. Interfaces of the cryptography manager in S2Net.
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6.1 Security Analysis

We first summarize the security of S2Net in Table 2 based
on our threat model (Section 3). Similar to other approaches
leveraging hardware-based protection [9], [12], S2Net can
protect from memory disclosure and code injection attacks,
thanks to the hardware-based memory isolation. Further-
more, in S2Net, malicious network stacks and file systems
cannot leak private data. Since all the components related to
the secure protocol are separated and isolated from the
FOS, private data can only be decrypted in the secure world.
Lastly, S2Net can prevent compromised router apps from
exposing the private data due to the restricted interface of
the secure sandbox and the session manager. Although
router apps are allowed to process plaintext, they can nei-
ther pass the data to the FOS nor open a new connection to
unauthorized entities.

6.2 Performance Evaluation

We evaluate the performance of our implementation on the
i.MX 6Quad development board, focusing on the perfor-
mance of the key operations of S2Net and the end-to-end
performance of the sample applets.

Encryption and Decryption. We measure the throughput of
encrypting (E-) and decrypting (D-) data chunks. All the
results are averaged over 100 runs.

First, we compare the performance of a CW1 running on
a CPU core and the performance of a CW2 running on

CAAM. Fig. 7 shows the results for different data-chunk
sizes. The performance of the CW2 running on CAAM is
slightly lower than that of the CW1 in the case of 2 KB data
chunk. However, the throughput of the CW2 increases
when the data-chunk size is larger and becomes even higher
than the throughput of the CW1 in the 8 and 16 KB cases
(for DES algorithm). This is because the CW2 has an addi-
tional overhead caused by the CAAM driver (i.e., the time
to make a job descriptor, push/pull the result into/from
CAAM). Since the overhead increases in proportion to the
number of data chunks, the CW2 can work more efficiently
with data chunks of the bigger sizes.

Second, we evaluate how our parallel cryptography work-
ers may speed up the total cryptography performance. To do
this, we encrypt and decrypt 128 data chunks of 8 KB size to
see the performance enhancement in parallel execution. At
most, we have four crypto workers: three CW1s on three
CPU cores, and one CW2 on CAAM. Fig. 8 shows the results
with different numbers of CW1s, with/without the CW2 run-
ning on CAAM, in various cipher algorithms: AES using 128,
192, and 256 bits length keys running in CBC mode. It is
shown that our implementation has negligible overhead in
handling requests/responses between the crypto workers
and the cryptography manager. Without counting the CW2
on CAAM, we can linearly increase the throughput using
multiple cores, with at least a �1:98 or �2:94 performance
improvement using two or three CW1s, respectively,

TABLE 2
Data Security Analysis of S2Net Compared to Related Works

Privacy threat model S2Net mcTLS BlindBox TrustShadow Haven Genode
[10] [11] [12], [31] [9] [21]

Compromised FOS
- Memory disclosure, code injection � � � � � �
- Malicious network stack � � � - - -
- Malicious file system � � � � � -
Compromised apps / MBs
- Leaking data to remote server � � � - - -
Overhead moderate (one

encryption +
decryption)

high (depends on
# of contexts,

MBs)

high (up to
24x)

moderate (one
encryption +

decryption for files)

low low

Attacks can originate from both a compromised FOS and applications (apps) / middleboxes (MBs). (�: protected, �: protected, but no protection provided for
decrypted data, -: not protected).

Fig. 7. Encryption and decryption performance of crypto-workers: CW1
on a CPU core versus CW2 on CAAM.

Fig. 8. Performance of heterogeneous crypto-workers in S2Net, up to
three CW1s and one CW2.
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compared to the throughput of the single CW1.With the CW2
on CAAM, the performance of encryption (decryption) is fur-
ther increased up to 118 percent (104 percent) of a single
CW1. An interesting phenomenon observed from the result is
that the throughput of CAAM cryptography is increased as
the size of the key increases, because the CAAM module
already has enough capability provided by its circuit to deal
with large keys. On the other hand, the performance of SW-
cryptography (i.e., CW1) decreases since more computations
are needed for large keys. The benefit gained from using the
CAAMmodule decreases as the number of total crypto work-
ers increases due to the routing and scheduling overhead.
However, the system is still able to provide a throughput
higher than 360 Mbps, which is enough for practical home
network scenarios.

Secure Storage. We measure the file I/O throughput by
reading/writing a file from/into the secure storage to eval-
uate the overhead introduced by the S2Net system. For the
evaluation, we use sequential and random access patterns
for various sizes of files as in the benchmark applica-
tions [33] and [34]. Specifically, a test applet first reads (R)
and writes (W) a file of 4 MB as a sequence of data chunks
sequentially (S-) and randomly (R-). The size of the data
chunk in each read/write call is varied in the experiment to
investigate the impact of data chunk size on the throughput.
We set the cache size and the data block size of the secure
storage to 32 and 2 KB, respectively. In this test, a file access
without any en/decryption is used as our baseline.

Fig. 9 plots the I/O throughput with different sizes of
data chunks. It is shown that the performance of sequential
R/W is almost the same over the entire range of chunk
sizes. This is because the sequentially read/written chunks
would be contained by the same data block, and therefore
each block needs to be loaded from the disk (into the cache)
only once. In the random R/W, however, the following R/
W can request the data chunk stored in the non-adjacent
block (i.e., not cached). Moreover, even the cached data
block would be flushed soon due to the limited size of the
cache. Therefore, since the same data block would be loaded
from the disk multiple times, the random R/W achieves low
throughput when the chunk size is small. When the chunk
size is larger than the block size, the throughput increases
dramatically, because each data block needs to be loaded
only once. When the size of data chunk is large (512 KB),
the performance of baseline is 3:9� faster compared to the
secure-storage, owing to the overhead of en/decryption
and data block management in the secure storage.

To assess the impact of the cache in secure file stor-
age, we conducted another experiment in which files of
different sizes were used: 128 KB to 4 MB. In the experi-
ment, the chunk size was fixed to 128 KB, which turned
out to be an optimal value from the previous results,
and the size of the cache was set to 512 KB. Fig. 10
shows the throughput for both sequential and random
file accesses. The results of the sequential and random
access have been combined in w/o cache cases, since the
throughput is almost the same.

We observe from Fig. 10 that the throughput perfor-
mance is almost the same irrespective of the file size when
caching is not used. On the other hand, when caching is
employed, the throughput is improved by up to 75:0� for
the files smaller than the cache. In particular, the through-
put is higher than that of the baseline if the size of cache is
large enough to contain the files (up to 512 and 256 KB of
files for the sequential and random access patterns, respec-
tively). However, when the file is larger than the cache, the
performance decreases because cache misses occur more
frequently, leading to loading of data from the disk and
decrypting it. Even when the file size is the same as the
cache size, some of the data blocks cannot be cached, since
the secure file storage requires additional cache space for
storing management blocks. Unlike in sequential access,
some of the cached data blocks can be accessed again in ran-
dom access; therefore, the throughput of random R/W is
higher than that of sequential R/W.

Overhead of Attestation. To check the overhead of the
attestation, we measure the throughput and processing
time of SHA256 hashing that is used to generate a 256-bit
length signature per applet. We vary the size of the applet
up to 8 MB to see how much time will be required to gener-
ate a hash. Fig. 11 shows the result. Although the processing
time depends on the memory size, the throughput is similar
for different memory sizes, which is fast enough to check
applets periodically.

Web-Cache Performance. We measure the page load time
(PLT) of 11 popular websites in five cases: w/o proxy, proxy
w/o web-cache (cold loading), and proxy w/ web-cache (warm
loading) for both HTTP protocol version 1.1 and version 2.
Fig. 12 shows that our Web-cache applet is able to reduce
the PLT of the websites by up to 86.7 percent (82.6 percent)
for HTTP/2 (HTTP/1.1) when the Web resources are
cached. However, for cold loading, the applet results a lon-
ger PLT due to the extra handshake and decryption/
encryption overhead.

Fig. 9. Throughput of file I/O versus data chunk size. Fig. 10. Throughput of file I/O versus file size, with and w/o cache.
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One of the main differences between HTTP/2 and
HTTP/1.1 is a new binary framing layer that enables multi-
ple requests and responses to be sent over the same TLS
connection (i.e., be multiplexed). In the warm loading case,
HTTP/2 proxy is faster than HTTP/1.1 because the requests
and responses to fetch non-cacheable contents can be served
by the existing TLS connection without requiring additional
TLS/TCP handshakes. In the cold loading case, however,
the browser has to download all data including cacheable
files, thus the transmission time increases and the relative
benefit of multiplexing decreases, compared to the warm
loading case. As a result, HTTP/2 proxy achieves similar
performance to HTTP/1.1 proxy.

Content Filtering Performance. The performance of content
filtering is measured in two ways: a blacklist-based URL
matching and a DPI-based rule matching. Benefiting from
the use of Bloom filter, our content filtering applet is able to
perform URL matching very fast, independent of the size of
the blacklist database. The throughput is as high as
1:3� 105 URLs per second. It means that we can filter out a
URL in less than 8 microseconds, which is negligible. Fig. 13
shows the performance of DPI over strings. The size of the
strings varies from 128 B to 16 KB. Although the processing
time of DPI for the 16 KB string with 1,000 rules is about
just 1.4 seconds (on only one core), it would be efficient if
the DPI is applied only on the major parts of the content
(e.g., title and abstract of a Web page), because the process-
ing time will increase as the size of a string increases.

File Server Performance.Wemeasure the transmission speed
of the file server applet by uploading/downloading a file of
100 MB. The baseline performance measured without SOS is

67 and 69 Mbps for upload and download, respectively.
Although the uploading and downloading speeds of the file
server applet, which are 16 and 60 Mbps, respectively, are
slower than that of the baseline, they are still sufficient for
real-time multimedia services such as streaming 4 K vid-
eos [35]. The difference betweenupload anddownload speeds
of the file server applet are caused by the difference between R
andW throughput of the secure file storage as shown in Figs. 9
and 10. The interesting observation from the results is that
the performance gap is reduced by up to 94 percent compared
to the evaluation for the secure storage itself (Fig. 10). This
is because secure file transmission protocols, such as file
transfer protocols (FTP) over TLS/SSL, basically require en/
decryption, evenwhen S2Net is not employed.

Effort to Develop an Applet. General programming on SOS,
which is a microkernel-based operating system, would not
be easy, because its system architecture is different from
that of other popular OSes such as Linux. However, devel-
oping an applet for S2Net is not hard, because S2Net han-
dles all the communication details, and therefore applets
can just focus on data processing. As S2Net allows very lim-
ited interfaces (i.e., only communication and storage), we
expect it is not hard for developers to learn to write S2Net
applets, even if they are not familiar with microkernels.

7 DISCUSSION

Run-Time Attestation. We implemented only a simple static
attestation component, which just computes the hash of the
binaries of applets and compares the computed hash to pre-
stored ones in the local storage. Therefore, we can only
detect whether the binaries of applets have been changed or
not. Ideally, we should also do run-time attestation to check
the integrity of the run-time states of applets, which is hard
to do and causes additional overhead. However, thanks to
the very narrow interfaces provided to applets, even if an
applet is compromised at run-time, we can still ensure that
the applet cannot leak personal user data.

Speculative Execution Attacks. Since speculative execution
attacks, including Meltdown [36] and Spectre [37] threaten
modern processors speculation methods, the ARM Cortex-
A9 used in our prototype can be similarly affected by vari-
ant 1 and 2 of Spectre [38]. The variant 2 can be mitigated by
applying kernel patch provided by ARM or invalidating the
branch predictor [38]. Compared to the variant 2, the variant

Fig. 11. Performance of calculating SHA256 hash.

Fig. 12. Page load time of 11 popular websites (lower is better).
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1 is harder to mitigate, because vulnerable area needs to be
found by manual inspection [39]. Software developers can
use the speculation barrier headers provided by ARM to
protect their private data from the attacks. As stated in [39]
and [40], it is harder to exploit the vulnerabilities on secure
space from the Normal world in practice, and any Spectre
attacks on Trusted Execution Environment (TEE) are not
identified yet. Also, it is difficult for applets to mount Spec-
tre attacks because the applets are designed not to be mali-
cious under the assumption made in Section 3 and
attestation is performed. Further, secure sandboxing mecha-
nism makes the attacks harder to succeed [41]. In addition,
SOS can be patched more easily compared to the compli-
cated FOSs due to its small codebase. Also, the updated
SOS is always verified during the secure boot process to
ensure the integrity of SOS.

Connection to Remote Servers. The S2Net system currently
prohibits applets from opening any new connection to
remote servers. It is useful for minimizing the attack surface;
however, it also limits useful functions of applets such as
downloading files from multiple servers in the background
and automatic updates of applets. The easiest way to enable
an applet to make a new connection to remote servers, while
ensuring security, would be to launch one applet for each
domain (e.g., a file). Another solution could be leveraging
the client certificate the user signs a list of allowed domains
for an applet with the private key. When the applet tries to
open a new connection to a new server, the session manager
can decrypt the list and check whether the domain is on the
list. A third alternative is to provide an update service to
applet. The developer of an applet, which needs periodical
updates, can sign the domain and address of the update and
attach them to the applet. Since the SOS can decrypt the
address using the developer’s certificate, it can establish a
newHTTPS connection for downloading the update and ver-
ify the downloaded update before its use.

Fine-Grained Access Control for HTTP Content. The current
S2Net design only supports coarse-grained access control.
All applets have full access permissions to the HTTP con-
tent they receive from all the HTTP requests and responses.
They can not only read but also arbitrarily change all the
HTTP headers and bodies. As different applets may require
different permissions, it is desirable to utilize fine-grained

access control to further regulate the behavior of applets.
For example, an intrusion-detection applet only needs to
read the HTTP requests and responses but does not need to
change them. To this end, we may introduce explicit per-
mission management as mcTLS [10] does. We consider this
as future work.

Load Balancing Between the Normal and Secure Worlds. In
this paper, we assume that the computational load in the
Secure world is higher than that in the Normal world,
because the most computation-intensive task would be
cryptography and the routing apps that process the user
data will be running on SOS. In practice, however, the home
router user may want to run applications requiring heavy
computations such as machine learning in the Normal
world. Hence, the allocation of CPU cores should be flexible
and configurable. In the prototype implementation of
S2Net, the number is configured in the SOS and the assign-
ment of CPU cores can be modified but requires rebooting
the system. Ultimately, it would be possible to assign CPU
cores to each world in run-time, because all the CPU cores
are originally designed to switch between the Secure and
Normal worlds. However, further development is needed
for switching worlds safely without any loss of data or secu-
rity issues, thus we left this as a future work.

Configuration of System Parameters. There are some system
parameters such as the number of crypto-workers, the
period of attestation, and the number of CPU cores, that can
affect the performance of S2Net. Under S2Net architecture,
at least one CPU core per world, one crypto-worker should
be assigned, and attestation must be performed once, when
an applet is launched. Then, users and/or developers can
adjust the system parameters considering the number of
applets and their computational loads. Regarding the assign-
ment of crypto-workers, the bandwidth of Internet connec-
tion and the number of simultaneous TLS sessions would be
considered. For example, if a user has a 50 Mbps connection
to the Internet, one crypto-worker could be sufficient, as
shown in Fig. 8. However, if a higher bandwidth is provided
with many TLS sessions, then more crypto-workers will be
needed to accelerate the cryptography throughput. Simi-
larly, users can decrease the period of attestation as the num-
ber of applets increases. Ultimately, the attestation period
would be adjusted adaptively depending on the number of
applets currently running on S2Net and their computational
loads. Such dynamic optimization process would be able
to be applied to other system parameters; we left it as a
futurework.

8 RELATED WORK

Microkernel and LibOS. Including Genode, there are other
microkernels [42] and LibOS [43] approaches that pro-
vide software-based isolation among applications. S2Net,
however, leverages a hardware-based mechanism to sepa-
rate the FOS (in the normal world) from the SOS (in the
secure world), thus providing much stronger isolation.
Additionally, S2Net can leverage the rich features of FOS
for home routers, i.e., the entire TCP/IP stack, but without
the need to trust FOS.

Trusted Computing. Besides ARM TrustZone, there are
other secure hardware such as hardware security module

Fig. 13. Processing time of the DPI versus size of string.
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(HSM) [44], trusted platform module (TPM) [45], and Intel
software guard extension (SGX) [46]. HSM and TPM are
usually used for protecting secrets (e.g., keys) and for light-
weight security computing such as a key generation. SGX is
a new mechanism from Intel, which allows executing user-
level code within a hardware-protected environment called
enclave. This paper focuses only on ARM TrustZone, but the
general principle developed here may also be suitable for
the SGX platform.

A large body of literature has focusedonprotecting applica-
tion data from an untrusted OS, by leveraging hardware secu-
rity capability [9]. However, they assume that the application
is trusted, and therefore do not restrict the application behav-
ior. S2Net, however, not only shields user data from the
untrusted FOS in the Normal world, but also confines
untrusted applets in the SOS inside the secureworld.

Secure Middleboxes. Recently, secure middleboxes were pro-
posed to add network functions in HTTPS flows by making
the middlebox visible to and controllable by users [10], [11],
[47], [48], [49]. For example, Ericsson proposes using an
explicit proxy certificate to indicate that a proxy is trusted [47].
Google requires that a client maintains a persistent TLS con-
nection with a proxy to pass session keys out-of-band [48].
Cisco proposes a TLS extension to provide consistent security
policies for the client, server, and proxy [49]. Without hard-
ware support, all these solutions runwithin an untrusted com-
modity OS, and are thus less secure. They introduce extra
complexity, and thus increase the attack surface.

Recently, mcTLS [10] extended TLS to support fine-
grained access control with trusted in-network functions. In
addition, BlindBox enables deep packet inspection over
encrypted traffic through a new protocol and new encryp-
tion schemes [11]. All these works assume that the middle-
box OS and applications are trusted. However, as we
discussed earlier, such assumptions may be invalidated in
current home router designs. Only one recently published
work [50] considers (potentially) malicious OS and applica-
tions and provides a concept for the system design; how-
ever, it lacks evaluation for practical applications.

Sandboxing Mechanisms. Many sandboxing mechanisms
at different software-stack levels have been proposed in lit-
erature. Examples include those from virtual machine [51]
and library OS [52], to containers [53], [54], application vir-
tualization [19], and Docker systems [55]. Our sandboxing
approach is not fundamentally new compared to the previ-
ous ones. Instead, S2Net newly introduces restricted interfa-
ces that are necessary for secure communication.

9 CONCLUSION

In this paper, we have proposed a novel system, named
S2Net, for smart home routers, to preserve user privacy
while providing rich functionalities. S2Net protects user
privacy against both vulnerable router OS and applications
by ensuring that the private data are always shielded from
the Normal world and processed only in the Secure world
of ARM TrustZone, and isolating data access among ses-
sions with the proposed secure interfaces and SOUP. We
could demonstrate via the experimental results that the
implemented S2Net system was able to achieve high
throughput performance, while significantly speeding up

the cryptography performance and mitigating the overhead
of S2Net by using the proposed crypto-workers for multiple
CPU cores and a cryptographic hardware module. The
results also showed that the S2Net enables the smart home
router to provide various services such as web caching and
content filtering to users without interruption, while pro-
tecting the personal data.

APPENDIX

A. EXAMPLE CODE OF APPLET

In this section, we present example code of DPI applet with
the detailed explanation consisting of the following four
phases: initialization, pull packet/data, process data, push
packet/data. Although the exact shape of functions in the
example code of the prototype could be different from that
of the interfaces shown in Fig. 5, functionality of the proto-
type is same as the description stated in Section 4.4.

Example code of the initialization phase is shown in
Fig. 14. In the initialize phase, the queues from session
manager is initialized (from/to, up/downlink). Here we
used four queues in total, however, developers can use
only two queues if they want to consider only downlink
data. The memory allocation is requested by calling API
provided by Genode OS [21]. In Genode, which is based
on micro kernel, the OS strictly restrict the resources allo-
cated to each process.

Fig. 15 shows how the applet pulling and pushing pack-
ets from the buffers. In the while loop of function named,
entry(), the applet checks whether there are newly arrived
packets or not. If there are packets in uplink or downlink,
the packets are pulled, processed, and pushed as shown in
entry_ps_to_pc(). In this example, processes for uplink and
downlink are exactly same (using the same process_packet()
function). Some developers can differentiate these processes
(e.g., applying different rules to uplink and downlink).

The packet processing phase of the deep packet inspec-
tion applet is shown in Fig. 16. In this phase, the data is

Fig. 14. Example code of deep packet inspection applet. Phase 1)
initialization.
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processed by pre-defined regular expression (regex) rules
for pattern matching. In this paper, we ported Boost
library into Genode for the regex processing [56]. Unlike
the example, which just counts the number of matched
rules, developers can make their own routine for the data
processing. Finally, the main procedure for running
applet is shown in Fig. 17.
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